• Langehund@lemmy.world
      link
      fedilink
      arrow-up
      45
      ·
      10 months ago

      This steels intended design use is hydrogen production through the electrolysis of salt water. Typically it is done with titanium because existing stainless steels corrode too much in the high chloride environment. But this novel process of adding corrosion resistance steel performs just as well as the titanium. It’s not a knife steel. As with most material science materials, this was designed for a specific use case in mind. Not all steels have to be good at everything. A knife super steel would probably be bad at hydrogen production for example.

      • Thanks!

        True, steels are very specific, even within knife applications. For instance, there are certain steels used for knives for marine environments; they’re not usually used outside of those specialty knives because they give up other desireable characteristics for the corrosion resistance.

        Which leads me back to why I asked the question. Corrosion/rust resistance is desireable in knives, and that’s what this sounded like. Ah, well… maybe it’ll inform the next generation of steels.

    • webghost0101@sopuli.xyz
      link
      fedilink
      arrow-up
      2
      ·
      edit-2
      10 months ago

      The way i read it is its another big step in the development of nanocomposites/meta materials.

      You can sort of explain it by hand carving materials on a molecular level so they exibit all kinds of possibly exitic effects. Like deforming light or to kill certain germs.

      Its one of my favorite tech to mention because the story of supposed normal looking but atomically weird materials found at ufo crashsites