• 32 Posts
  • 44 Comments
Joined 1 year ago
cake
Cake day: July 13th, 2023

help-circle
  • Decided to just shoot a semi-random part of Cygnus. The large extended Ha region in Cygnus is unofficially called Smaug, and this is a photo specifically of the area around LBN 325/326. The nebulosity in this pic is false color, but the stars are true color RGB. I really love how this turned out with the narrowband palette, especially with the Oiii region on the right side looking almost like a true color Ha region. Captured over a shitload of nights from Aug-Oct 2024 from a bortle 9 zone.

    Places where I host my other images:

    Flickr | Instagram


    Equipment:

    • TPO 6" F/4 Imaging Newtonian

    • Orion Sirius EQ-G

    • ZWO ASI1600MM-Pro

    • Skywatcher Quattro Coma Corrector

    • ZWO EFW 8x1.25"/31mm

    • Astronomik LRGB+CLS Filters- 31mm

    • Astrodon 31mm Ha 5nm, Oiii 3nm, Sii 5nm

    • Agena 50mm Deluxe Straight-Through Guide Scope

    • ZWO ASI-290mc for guiding

    • Moonlite Autofocuser

    Acquisition: 57 hours 40 minutes (Camera at -15°C), NB exposures at unity gain and BB at half unity

    • Ha - 111x600"

    • Oiii - 127x600"

    • Sii - 94x600"

    • R - 48x60"

    • G - 48x60"

    • B - 44x60"

    • Darks- 30

    • Flats- 30 per filter

    Capture Software:

    • Captured using N.I.N.A. and PHD2 for guiding and dithering.

    PixInsight Preprocessing:

    • BatchPreProcessing

    • StarAlignment

    • Blink

    • ImageIntegration per channel

    • DrizzleIntegration (2x, Var β=1.5)

    • Dynamic Crop

    • DynamicBackgroundExtraction

    duplicated each image and removed stars via StarXterminator. Ran DBE with a shitload of points to generate background model. model subtracted from original pic using the following PixelMath (math courtesy of /u/jimmythechicken1)

    $T * med(model) / model

    Narrowband Linear:

    • Blur and NoiseXTerminator

    • StarXterminator to completely remove stars (to be later replaced by the RGB ones)

    • HistogramTransformation to stretch nonlinear

    RGB Linear:

    • ChannelCombination to combine monochrome R G and B frame into color image

    • SpectroPhotometricColorCalibration

    • BlurXTerminator for star sharpening (correct only)

    • HSV Repair

    • StarXterminator to generate a stars-only image

    • ArcsinhStretch + HT to stretch nonlinear (to be combined with starless narrowband image later)

    • Invert > SCNR > invert to remove magentas

    • Curves to saturate the stars a bit more

    Nonlinear:

    • PixelMath to combine monochrome Ha Oiii and Sii images into a color image with Jimmy’s Royale Palette

    R = 0.3*Oiii+0.7*(Oiii^~(0.7*Ha+0.3*Sii))^1.2

    G = ((Oiii*Ha)^~(Oiii*Ha))*Ha + ((Oiii*Ha)^(Oiii*Ha))*Sii

    B = 0.9*Sii+Ha-Oii

    • NoiseX again

    • Shitloads of Curve Transformations to adjust lightness, hues, contrast, saturation, etc

    • more curves

    • Extract L --> LRGBCombination for chrominance noise reduction

    • even more curves

    • Pixelmath to add in the stretched RGB stars only image from earlier

    This basically re-linearizes the two images, adds them together, and then stretches them back to before. More info on it here)

    mtf(.005,

    mtf(.995,Stars)+

    mtf(.995,Starless))

    • Couple final curves

    • Resample to 60%

    • Annotation



  • NGC 4490 is a galaxy colliding with the smaller NGC 4485 galaxy, and both are about 25 million light years away. This image was taken with a monochrome camera through filters for luminance (all visible light), red, green, blue, and Hydrogen-alpha (656nm), which were combined into a color image. The Hydrogen-alpha was combined with red (described below) to make the HaLRGB image. The pink Ha regions are star forming nebulae within the galaxies. This got cropped out of the final pic, but I ended getting some gorgeous diffraction spikes on this star near the edge of the full FOV

    Places where I host my other images:

    Flickr | Instagram


    Equipment:

    • TPO 6" F/4 Imaging Newtonian

    • Orion Sirius EQ-G

    • ZWO ASI1600MM-Pro

    • Skywatcher Quattro Coma Corrector

    • ZWO EFW 8x1.25"/31mm

    • Astronomik LRGB+CLS Filters- 31mm

    • Astrodon 31mm Ha 5nm, Oiii 3nm, Sii 5nm

    • Agena 50mm Deluxe Straight-Through Guide Scope

    • ZWO ASI-120MC for guiding

    • Moonlite Autofocuser

    Acquisition: 27 hours 37 minutes (Camera at half Unity Gain, -15°C)

    • Ha - 128x360"

    • Lum - 464x60"

    • Red - 152x60"

    • Green - 150x60"

    • Blue - 123x60"

    • Flats- 30 per filter

    • 24 JimmyFlats per broadband filter

    Capture Software:

    PixInsight Processing:

    • BatchPreProcessing (with premade JimmyFlats)

    • StarAlignment

    • Blink

    • ImageIntegration

    • DrizzleIntegration (2x, Var β=1.5)

    • DynamicCrop

    • DynamicBackgroundExtraction

    duplicated each image and removed stars via StarXterminator. Ran DBE to generate background model. model subtracted from original pic using the following PixelMath (math courtesy of /u/jimmythechicken1)

    $T * med(model) / model

    Luminance:

    • BlurXTerminator

    • ArcsinhStretch + histogramtransformation to bring nonlinear

    RGB:

    • ChannelCombinaiton to combine monochrome R, G, B stacks into color image

    • SpectroPhotometricColorCalibration

    • BlurXTerminator (correct only mode)

    • HSV Repair

    making clean Ha

    loosely following this guide

    This basically subtracts any broadband signal from the Ha pic, leaving only the Ha emission, which is then combined in with the red and a little bit of the blue channels

    • PixelMath to isolate just Ha

    Ha-Q * (Red-med (Red)), Q=0.75

    • PixelMath to add Ha into RGB image

    Red = $T+B*(Ha_Clean - med(Ha_Clean))

    Green = $T

    Blue = $T+B0.2(Ha_Clean - med(Ha_Clean))

    B variable = 0.6 (this controls how strongly the Ha is added)

    Nonlinear

    • ArcsinhStretch + histogramtransformation to bring HaRGB image nonlinear

    • MLT for large scale chrominance noise reduction

    • shitloads of curve transformations to adjust lightness, contrast, saturation, etc (with various luminance and star masks)

    • slight SCNR to remove some greens

    • LRGBCombination with stretched Luminance

    • DeepSNR

    • more curves

    • ColorSaturation to slightly desaturate the Ha regions (they were very pink compared to the rest of the galaxy

    • slight noisexterminator

    • LocalHistogramEqualization

    • even more curves

    • Resample to 75%

    • DynamicCrop onto just the galaxy

    • annotation



  • It may not be as big or well known as the other well known cluster in Hercules (M13), but it sure looks nice. Captured over 4 nights in July/August 2024 from a Bortle 9 zone

    Places where I host my other images:

    Instagram | Flickr


    Equipment:

    • TPO 6" F/4 Imaging Newtonian

    • Orion Sirius EQ-G

    • ZWO ASI1600MM-Pro

    • Skywatcher Quattro Coma Corrector

    • ZWO EFW 8x1.25"/31mm

    • Astronomik LRGB+CLS Filters- 31mm

    • Astrodon 31mm Ha 5nm, Oiii 3nm, Sii 5nm

    • Agena 50mm Deluxe Straight-Through Guide Scope

    • ZWO ASI-120MC for guiding

    • Moonlite Autofocuser

    Acquisition: 6 hours 55 minutes (Camera at half Unity Gain, -15°C)

    • Lum - 209x60"

    • Red - 78x60"

    • Green - 62x60"

    • Blue - 66x60"

    • Flats- 30 per filter

    • 24 JimmyFlats per filter

    Capture Software:

    PixInsight Processing:

    • BatchPreProcessing (with premade JimmyFlats)

    • StarAlignment

    • Blink

    • ImageIntegration

    • DrizzleIntegration (2x, Var β=1.5)

    • DynamicCrop

    • DynamicBackgroundExtraction

    duplicated each image and removed stars via StarXterminator. Ran DBE with a shitload of points to generate background model. model subtracted from original pic using the following PixelMath (math courtesy of /u/jimmythechicken1)

    $T * med(model) / model

    Luminance:

    • BlurXTerminator (correct only mode)

    • ArcsinhStretch + histogramtransformation to bring nonlinear

    RGB:

    • ChannelCombinaiton to combine monochrome R, G, B stacks into color image

    • BlurXTerminator (correct only mode)

    • SpectroPhotometricColorCalibration

    • HSV Repair

    • ArcsinhStretch + histogramtransformation to bring nonlinear

    • Curves to saturate it a little

    • MLT for large scale chrominance noise reduction

    Nonlinear:

    • LRGBCombination with stretched L as luminance

    • DeepSNR Noise reduction

    • Several CurveTransformations to adjust lightness, contrast, colors, saturation, etc.

    • Invert > SCNR > invert > SCNR to remove some greens and magentas

    • More curves

    • A little bit of noiseXterminator

    • DynamicCrop in on the clustert

    • Resample to 75%

    • Annotation



  • I love procrastinating on processing my images! I got set up early at a dark site last month and decided to shoot the sun while it was still up. There were a shitload of sunspots, including AR3697 in the bottom right. This sunspot group was the one that gave us the wonderful aurora back in May (back when it was known as AR3664)

    Places where I host my other images:

    Flickr | Instagram


    Equipment:

    • TPO 6" F/4 Imaging Newtonian

    • Orion Sirius EQ-G

    • ZWO ASI1600MM-Pro

    • Skywatcher Quattro Coma Corrector

    • ZWO EFW 8x1.25"/31mm

    • Astronomik LRGB+CLS Filters- 31mm

    • Moonlite Autofocuser

    • Astrozap BAADER AstroSolar Density 5 filter

    Acquisition:

    • Green filter - 5000 frames at gain 139 and 0.324ms exposure

    Capture Software:

    • Captured using sharpcap

    Processing:

    • Stacked the best 25% of frames in Autostakkert, 2X resample and autosharpened

    • Colorized using curves in Photoshop

    • More lightness/Hue Adjustments

    • Astrosurface wavelets to remove some grid artifacts from stacking

    • STF applied in pixinsight

    • Annotatation



  • I’m guessing it’s called that because it’s kinda headphone shaped. It was discovered in the 30’s so I’m assuming only the brightest parts of the nebula were visible to the astronomers.

    This image is a combination of false color narrowband images for the nebula itself, plus true color RGB stars (the nebula is mostly red and a little blue in true color). If you zoom in to the center you can see the very blue white dwarf that caused the planetary nebula to form. Also for those curious this is what a single 10 minute long Ha exposure looks like (image total is 83.5 hours exposure). Captured over 33 nights from Jan-May 2024 from a bortle 9 zone.

    Places where I host my other images:

    Flickr | Instagram


    Equipment:

    • TPO 6" F/4 Imaging Newtonian

    • Orion Sirius EQ-G

    • ZWO ASI1600MM-Pro

    • Skywatcher Quattro Coma Corrector

    • ZWO EFW 8x1.25"/31mm

    • Astronomik LRGB+CLS Filters- 31mm

    • Astrodon 31mm Ha 5nm, Oiii 3nm, Sii 5nm

    • Agena 50mm Deluxe Straight-Through Guide Scope

    • ZWO ASI-290mc for guiding

    • Moonlite Autofocuser

    Acquisition: 83 hours 30 minutes (Camera at -15°C), NB exposures at unity gain and BB at half unity

    • Ha - 238x600"

    • Oiii - 247x600"

    • R - 54x60"

    • G - 53x60"

    • B - 54x60"

    • Darks- 30

    • Flats- 30 per filter

    Capture Software:

    • Captured using N.I.N.A. and PHD2 for guiding and dithering.

    PixInsight Preprocessing:

    • BatchPreProcessing

    • StarAlignment

    • Blink

    • ImageIntegration per channel

    • DrizzleIntegration (2x, Var β=1.5)

    • Dynamic Crop

    • DynamicBackgroundExtraction 3x

    duplicated each image and removed stars via StarXterminator. Ran DBE with a shitload of points to generate background model. model subtracted from original pic using the following PixelMath (math courtesy of /u/jimmythechicken1)

    $T * med(model) / model

    Narrowband Linear:

    • Blur and NoiseXTerminator

    • StarXterminator to completely remove stars (to be later replaced by the RGB ones)

    • ArcsinhStretch to slightly stretch nonlinear

    • iHDR 2.0 script (low preset) to stretch each channel the rest of the way.

    here’s the link to the repo if you want to add it to your own PI install.

    RGB Linear:

    • ChannelCombination to combine monochrome R G and B frame into color image

    • SpectroPhotometricColorCalibration

    • BlurXTerminator for star sharpening (correct only)

    • HSV Repair

    • StarXterminator to generate a stars-only image

    • ArcsinhStretch + HT to stretch nonlinear (to be combined with starless narrowband image later)

    • Invert > SCNR > invert to remove magentas

    • Curves to saturate the stars a bit more

    Nonlinear:

    • PixelMath to combine stretched Ha and Oiii images into color image (/u/dreamsplease’s palette)

    R = iif(Ha > .15, Ha, (Ha*.8)+(Oiii*.2))

    G = iif(Ha > 0.5, 1-(1-Oiii)*(1-(Ha-0.5)), Oiii *(Ha+0.5))

    B = iif(Oiii > .1, Oiii, (Ha*.3)+(Oiii*.2))

    • NoiseX again

    • Background Neutralization

    • Shitloads of Curve Transformations to adjust lightness, hues, contrast, saturation, etc

    • even more curves

    • Pixelmath to add in the stretched RGB stars only image from earlier

    This basically re-linearizes the two images, adds them together, and then stretches them back to before. More info on it here)

    mtf(.005,

    mtf(.995,Stars)+

    mtf(.995,Starless))

    • Couple final curves

    • Resample to 65%

    • DynamicCrop

    • Annotation



  • Sh2-64 is the red nebula to the right of the image. It frames up pretty well with the more golden stars seen in the milky way core. I probably should’ve gotten more exposure time to help bring out some of the dark nebula details, but it was only clear for one night at the dark site (at least the night went perfectly, which is rare for trips out to the middle of nowhere). Captured on June 7th, 2024 from a Bortle 3 zone (Deerlick Astronomy Village)

    Places where I host my other images:

    Flickr | Instagram


    Equipment:

    • TPO 6" F/4 Imaging Newtonian

    • Orion Sirius EQ-G

    • ZWO ASI1600MM-Pro

    • Skywatcher Quattro Coma Corrector

    • ZWO EFW 8x1.25"/31mm

    • Astronomik LRGB+CLS Filters- 31mm

    • Astrodon 31mm Ha 5nm, Oiii 3nm, Sii 5nm

    • Agena 50mm Deluxe Straight-Through Guide Scope

    • ZWO ASI-290mc for guiding

    • Moonlite Autofocuser

    Acquisition: 5 hours 44 minutes (Camera at half unity gain -15°C)

    • L - 76x120"

    • R - 32x120"

    • G - 32x120"

    • B - 32x120"

    • Darks- 30

    • Flats- 30 per filter

    Capture Software:

    • Captured using N.I.N.A. and PHD2 for guiding and dithering.

    PixInsight Preprocessing:

    • BatchPreProcessing

    • StarAlignment

    • Blink

    • ImageIntegration per channel per panel

    • DrizzleIntegration (2x, Var β=1.5)

    • Dynamic Crop

    • DynamicBackgroundExtraction

    Luminance Linear:

    • BlurXterminator (Correct only)

    • NoiseXterminator

    • HistogramTransformation + sketchpad’s iHDR script (low preset) to stretch to nonlinear

    RGB Linear:

    • ChannelCombination to combine monochrom R G and B stacks into color image

    • SpectrophotometricColorCalibration

    • BlurXterminator (correct only)

    • HSV repair

    • ArcsinhStretch + iHDR script (low preset) to stretch to nonlinear

    Nonlinear Processing:

    • LRGBCombination using stretched L as luminance

    • DeepSNR

    • Various curve adjustments for lightness, contrast, hue, saturation, etc (with varying lum/star masks)

    • Slight SCNR green

    • ColorSaturation to boost the saturation of the Ha region

    • More curves

    • NoiseXterminator

    • invert > SCNR > invert to remove some magentas

    • LocalHistogramEqualization

    two rounds at scale 16 and 132 to target different sized structures

    • LOTS more curve adjustments

    • MultiscaleLinearTransform for chrominance noise reduction

    • Even more curves

    • Resample to 60%

    • Annotation







  • Finally done with classes and I got some time to at least star processing my pics. Gonna be a while before I figure out all the HDR stuff, so here’s a pic of the prominences about 10 seconds before C3. It was absolutely nutty seeing them naked eye during the eclipse, and visually through my other telescope. Captured on April 8th, 2024 from Sikeston, MO.

    Places where I host my other images:

    Flickr | Instagram


    Equipment:

    • TPO 6" F/4 Imaging Newtonian

    • Orion Sirius EQ-G

    • Canon T3i (Ha modded)

    • Skywatcher Quattro Coma Corrector

    • Moonlite Autofocuser

    Acquisition:

    • Single 1/4000" exposure at ISO 100

    Capture Software:

    • Eclipse Orchestrator Free for automating the capture sequence

    • NINA for controlling the mount and autofocuser

    Photoshop processing:

    • Crop, and some minor adjustments to exposure, contrast, shadows, whites, and blacks, and slight S curve



  • lefty7283@lemmy.worldOPtopics@lemmy.world23% Waxing Crescent [OC]
    link
    fedilink
    English
    arrow-up
    3
    ·
    7 months ago

    Thanks to my north facing balcony, I can only photograph the moon when it’s at high declinations. Fortunately it was at +27 dec the other day, and it was early enough for me to be awake to shoot it! Captured at 10pm on April 12th, 2024.

    Places where I host my other images:

    Flickr | Instagram


    Equipment:

    • TPO 6" F/4 Imaging Newtonian

    • Orion Sirius EQ-G

    • ZWO ASI1600MM-Pro

    • Skywatcher Quattro Coma Corrector

    • ZWO EFW 8x1.25"/31mm

    • Astronomik LRGB+CLS Filters- 31mm

    • Astrodon 31mm Ha 5nm, Oiii 3nm, Sii 5nm

    • Agena 50mm Deluxe Straight-Through Guide Scope

    • ZWO ASI-120MC for guiding

    • Moonlite Autofocuser

    Acquisition: (Camera at Unity Gain, -15°C)

    • R - 20000 x 5.4ms

    • G - 2000 x 4.3ms

    • B - 2000 x 6.0ms

    Capture Software:

    • Captured using Sharpcap and N.I.N.A. for mount/filterwheel control

    Stacking:

    • Stacked the best 25% of frames in Autostakkert (autosharpened, 3X Drizzle)

    PixInsight Processing:

    • DynamicCrop

    • ChannelCombination to combine monochrome images into RGB image

    • ChannelMatch to align G and B color channels to red

    • ColorCalibration

    • HistogramTransformation (slight stretch)

    • SCNR > invert > SCNR to remove green and magenta color fringing

    • CurvesTransformations to adjust lightness, contrast, colors, saturation, etc.

    • LocalHistogramTransformation

    • dynamic crop

    • Annotation




  • Holy shit this was the most awesome thing I’ve ever experienced. I’ve been prepping for this eclipse ever since I got clouded out at the last minute for the 2017 eclipse, and almost everything went perfectly! (I didn’t even hit eclipse traffic on the way home!) With the camera automated I got 163 HDR pics during totality, plus more from the partial phases, so expect to see some more pics in the coming weeks!

    I really like how the diffraction spikes turned out from the Bailey’s Beads, and how the blue turned out in my totality pics. I tried to keep the editing minimal on this, and just did some minor contrast and saturation adjustments (see below for more details). The corona in the image is definitely bluer than how it looked irl (which was mostly just white), but the prominence color is pretty close to what I saw through my other scope. I suspect it’s because of the custom white balance I’ve had to use for my astro modded cam. For those curious here are my other C2 pics, unedited other than cropping

    Captured on April 8th, 2024 from Sikeston, MO.

    Places where I host my other images:

    Flickr | Instagram


    Equipment:

    • TPO 6" F/4 Imaging Newtonian

    • Orion Sirius EQ-G

    • Canon T3i (Ha modded)

    • Skywatcher Quattro Coma Corrector

    • Moonlite Autofocuser

    Acquisition:

    • Single 1/4000" exposure at ISO 100

    Capture Software:

    • Eclipse Orchestrator Free for automating the capture sequence

    • NINA for controlling the mount and autofocuser

    Photoshop processing:

    • Just a crop, and some minor adjustments to exposure, contrast, shadows, whites, and blacks


  • The Little Dumbbell Nebula gets its name because it kinda looks like a tinier version of the Dumbbell Nebla M27 (yes, a different palette was used for this pic). It’s really tiny compared to the uncropped FOV. I’m a lot happier with this attempt at it, compared to my 2019 pic of M76 with the same equipment. I know It’s a bit out of season rn but I needed something to shoot at the start of the night. The nebulosity itself is false color, but the stars are true color RGB. Captured over 10 nights in Feb/Mar 2024 from a bortle 9 zone (I could only get a couple hours max per night on it.

    Places where I host my other images:

    Flickr | Instagram


    Equipment:

    • TPO 6" F/4 Imaging Newtonian

    • Orion Sirius EQ-G

    • ZWO ASI1600MM-Pro

    • Skywatcher Quattro Coma Corrector

    • ZWO EFW 8x1.25"/31mm

    • Astronomik LRGB+CLS Filters- 31mm

    • Astrodon 31mm Ha 5nm, Oiii 3nm, Sii 5nm

    • Agena 50mm Deluxe Straight-Through Guide Scope

    • ZWO ASI-290mc for guiding

    • Moonlite Autofocuser

    Acquisition: 21 hours 6 minutes (Camera at -15°C), NB exposures at unity gain and BB at half unity

    • Ha - 99x360"

    • Oiii - 83x360"

    • R - 101x60"

    • G - 100x60"

    • B - 99x60"

    • Darks- 30

    • Flats- 30 per filter

    Capture Software:

    • Captured using N.I.N.A. and PHD2 for guiding and dithering.

    PixInsight Preprocessing:

    • BatchPreProcessing

    • StarAlignment

    • Blink

    • ImageIntegration per channel

    • DrizzleIntegration (2x, Var β=1.5)

    • Dynamic Crop

    • DynamicBackgroundExtraction

    duplicated each image and removed stars via StarXterminator. Ran DBE with a shitload of points to generate background model. model subtracted from original pic using the following PixelMath (math courtesy of /u/jimmythechicken1)

    $T * med(model) / model

    Narrowband Linear:

    • Blur and NoiseXTerminator

    • StarXterminator to completely remove stars (to be later replaced by the RGB ones)

    • ArcsinhStretch to slightly stretch nonlinear

    • iHDR 2.0 script to stretch each channel the rest of the way.

    This is a great new pixinsight script from Sketch on the discord. here’s the link to the repo if you want to add it to your own PI install.

    RGB Linear:

    • ChannelCombination to combine monochrome R G and B frame into color image

    • SpectroPhotometricColorCalibration

    • BlurXTerminator for star sharpening

    • HSV Repair

    • StarXterminator to generate a stars-only image

    • ArcsinhStretch + HT to stretch nonlinear (to be combined with starless narrowband image later)

    Nonlinear:

    • PixelMath to combine stretched Ha and Oiii images into color image (/u/dreamsplease’s palette)

    R = iif(Ha > .15, Ha, (Ha*.8)+(Oiii*.2))

    G = iif(Ha > 0.5, 1-(1-Oiii)*(1-(Ha-0.5)), Oiii *(Ha+0.5))

    B = iif(Oiii > .1, Oiii, (Ha*.3)+(Oiii*.2))

    • NoiseX again

    • Shitloads of Curve Transformations to adjust lightness, hues, contrast, saturation, etc

    • LocalHistogramEqualization

    • UnsharpMask

    • More curves

    • ColorSaturation to slightly desaturate the purples

    • even more curves

    • Pixelmath to add in the stretched RGB stars only image from earlier

    This basically re-linearizes the two images, adds them together, and then stretches them back to before

    (again, credit to Jimmy independent starless processing stuff)

    mtf(.005,

    mtf(.995,Stars)+

    mtf(.995,Starless))

    • Couple final curves

    • DynamicCrop waaaay in on the nebula

    • Annotation




  • So I shot the Bubble Nebula in true-color last year, but I decided to shoot it again this past month in false color. It really helps to show the extended nebulosity, and gives me and excuse to compare my image to Hubble’s. This false color image uses the SHO palette, where the sulfur-ii wavelength is mapped to red, hydrogen-alpha to green, and oxygen-iii is blue. I’m really happy with how the colors turned out on this one. There’s also a number of other nebulae and a star cluster in frame. Captured over 14 nights in Jan/Feb 2024 from a bortle 9 zone (I could only get a couple hours max per night on it.

    Places where I host my other images:

    Flickr | Instagram


    Equipment:

    • TPO 6" F/4 Imaging Newtonian

    • Orion Sirius EQ-G

    • ZWO ASI1600MM-Pro

    • Skywatcher Quattro Coma Corrector

    • ZWO EFW 8x1.25"/31mm

    • Astronomik LRGB+CLS Filters- 31mm

    • Astrodon 31mm Ha 5nm, Oiii 3nm, Sii 5nm

    • Agena 50mm Deluxe Straight-Through Guide Scope

    • ZWO ASI-290mc for guiding

    • Moonlite Autofocuser

    Acquisition: 37 hours 36 minutes (Camera at -15°C), Camera at unity gain.

    • Ha - 95x360"

    • Oiii - 140x360"

    • Sii - 141x360"

    • Darks- 30

    • Flats- 30 per filter

    Capture Software:

    • Captured using N.I.N.A. and PHD2 for guiding and dithering.

    PixInsight Preprocessing:

    • BatchPreProcessing

    • StarAlignment

    • Blink

    • ImageIntegration per channel

    • DrizzleIntegration (2x, Var β=1.5)

    • Dynamic Crop

    • DynamicBackgroundExtraction

    duplicated each image and removed stars via StarXterminator. Ran DBE with a shitload of points to generate background model. model subtracted from original pic using the following PixelMath (math courtesy of /u/jimmythechicken1)

    $T * med(model) / model

    Narrowband Linear:

    • Blur and NoiseXTerminator

    • Duplicated the images before stretching to be used for separate stars-only processing

    • Slight stretch using HistogramTransformation

    • iHDR 2.0 script to stretch each channel the rest of the way.

    Stars Only Processing:

    • PixelMath to combine star images (SHO palette)

    • SpectroPhotometricColorCalibration (narrowband working mode)

    • StarXTerminator to make stars only image form each channel

    • SCNR > invert > SCNR > invert to remove greens and magentas

    • ArcsinhStretch + HT to stretch nonlinear - to be combined later with starless pic

    Nonlinear:

    • PixelMath to combine stretched Ha, Oiii, and Sii images into color image (SHO palette)

    • StarXterminator to remove stars

    • HistogramTransformations to tone back the greens and apply a more aggressive stretch to red and blue channels

    • Shitloads of Curve Transformations to adjust lightness, hues, contrast, saturation, etc

    • LRGBCombination with stretched Ha as luminance

    • DeepSNR

    • more curves

    • ColorSaturation to bring up the blues in the bubble

    • LocalHistogramEqualization

    • even more curves

    • MLT for chrominance noise reduction

    • Pixelmath to add in the stretched stars only image from earlier

    This basically re-linearizes the two images, adds them together, and then stretches them back to before

    mtf(.005,

    mtf(.995,Stars)+

    mtf(.995,Starless))

    • A round of NoiseXterminator for good measure

    • Resample to 60%

    • Annotation



  • lefty7283@lemmy.worldOPtopics@lemmy.worldM17 - The Omega Nebula [OC]
    link
    fedilink
    English
    arrow-up
    4
    ·
    edit-2
    10 months ago

    M17 is also known as The Swan Nebula (the bright core is swan shaped, esp when viewed visually through a telescope). Also pictured it the M18 star cluster off to the right.

    I originally shot this back in 2019 and decided to reprocess it since we have fun new tools and techniques (and I kinda know what I’m doing now with narrowband processing). I decided to keep the palettes similar overall, but with a less agressive stretch and more ‘natural’ look to the nebula. The noise reduction is a lot better when comparing the images at 1:1 (long gone are the days of TGV/MMT noise reduction!). Captured over 2 nights at the in May, 2019 from a Bortle 7 zone.

    Places where I host my other images:

    Flickr | Instagram

    Equipment:

    • TPO 6" F/4 Imaging Newtonian

    • Orion Sirius EQ-G

    • ZWO ASI1600MM-Pro

    • Skywatcher Quattro Coma Corrector

    • ZWO EFW 8x1.25"/31mm

    • Astronomik LRGB+CLS Filters- 31mm

    • Astrodon 31mm Ha 5nm, Oiii 3nm

    • Agena 50mm Deluxe Straight-Through Guide Scope

    • ZWO ASI-120MC for guiding

    • Moonlite Autofocuser

    Acquisition: 8 hours 10 minutes (Camera at Unity Gain, -15°C)

    • Ha- 42x300"

    • Oiii- 56x300”

    • Darks- 30

    • Flats- 30 per filter

    Capture Software:

    • EQMod mount control. Captured using N.I.N.A. and PHD2 for guiding and dithering.

    PixInsight Processing:

    • BatchPreProcessing

    • Blink

    • ImageIntegration

    • DrizzleIntegration (2X, VarK 1.5)

    • DynamicCrop

    • DynamicBackgroundExtraction

    duplicated each image and removed stars via StarXterminator. Ran DBE with a shitload of points to generate background model. model subtracted from original pic using the following PixelMath (math courtesy of /u/jimmythechicken1)

    $T * med(model) / model

    Narrowband Linear:

    • BlurXTerminator

    • NoiseXTerminator

    • STF Applied via HT to stretch nonlinear

    Nonlinear:

    • PixelMath to combine monochrone Ha and Oiii channels into color image (using ForaxX’s bicolor palette):

    R = Ha

    G= ((Oiii*Ha)^~(Oiii*Ha))*Ha + ~((Oiii*Ha)^~(Oiii*Ha))*Oiii

    B = Oiii

    • SCNR Green

    • LRGBCombination with stretched Ha as luminance

    • Shitloads of curve transformations to adjust lightness, contrast, hues, saturation, etc

    • LocalHistoGramEqualization 2x - one at scale 16 for fine details and one at 512 for large structures

    • More curves

    • DarkStructureEnhance

    • MLT for small scale chrominance noise reduction

    • NoiseXTerminator

    • Even more curves, some masked to just the core of the nebula

    • Resample to 60%

    • Annotation




  • Figured today is an appropriate day to post this. This nebula is also known as NGC 2264 I’m fairly certain the christmas tree is the entire nebula when the photo is inverted, and not just the cone nebula at the very end of it. Captured on November 17th, 2022, from a Bortle 4 zone.

    Places where I host my other images:

    Flickr | Instagram |


    Equipment:

    • TPO 6" F/4 Imaging Newtonian

    • Orion Sirius EQ-G

    • ZWO ASI1600MM-Pro

    • Skywatcher Quattro Coma Corrector

    • ZWO EFW 8x1.25"/31mm

    • Astronomik LRGB+CLS Filters- 31mm

    • Astrodon 31mm Ha 5nm, Oiii 3nm, Sii 5nm

    • Agena 50mm Deluxe Straight-Through Guide Scope

    • ZWO ASI-290mc for guiding

    • Moonlite Autofocuser

    Acquisition: 4 hours 2 minutes (Camera at half unity gain, -15°C)

    • L- 62x120"

    • R- 20x120"

    • G- 20x120"

    • B- 19x120"

    • Ha -47x300" x 2 panels

    • Darks- 30

    • Flats- 30 per filter

    Capture Software:

    • Captured using N.I.N.A. and PHD2 for guiding and dithering.

    PixInsight Processing:

    • BatchPreProcessing

    • SubframeSelector

    • StarAlignment

    • Blink

    • ImageIntegration

    • DrizzleIntegration (2x, Var β=1.5)

    Linear:

    • DynamicCrop

    • automaticBackgroundExtraction

    • EZ Decon

    • NoiseXTerminator

    Stretching Luminance:

    • MaskedStretch to 0.1 background

    • Starnet++ starmask made, subtracted from 0.3 Gray image and colvolved

    • Previous image used as a mask to stretch nebulosity without stretching stars

    • Normal HistogramTransformation

    RGB Linear:

    • Channelcombination to combine monochrome images into RGB image

    • SpectroPhotometricColorCalibration

    • SCNR green

    • HSV Repair

    • ArcsinhStretch + HT to bring nonlinear

    Nonlinear:

    • LRGBCombination with stretched luminance

    • Shitloads of CurveTransformations to adjust lightness, saturation, contrast, hues, etc.

    • Extract L --> LRGBCombination for chrominance noise reduction

    • More curves

    • SCNR to remove some background greens

    • LocalHistogramEqualization

    Two rounds of this. one at size 16 for the finer ‘feathery’ details and one at size 500 for large scale structures

    • ColorSaturation

    • even more curves

    • NoiseXTerminator

    • EZ Star Reduction

    • noise generator to add noise back into star reduced areas

    • MLT for chrominance noise reduction

    • Resample to 60%

    • Annotation